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Asymptotic methods are used to determine the dispersion equation for disturbances 
of rotating parallel flows in shallow water. From this equation the unstable modes 
and their growth rates are determined. The solution involves seven asymptotic 
expansions which are matched together. The results supplement and extend those 
which have been obtained previously using numerical methods by Griffiths, 
Killworth & Stern (1982) and by Hayashi & Young (1987). 

1. Introduction 
The stability of a zonal flow in a shallow layer of fluid on a rotating sphere was 

studied by Griffiths, Killworth & Stern (1982) using the f-plane approximation and 
by Hayashi & Young (1987) using the equatorial /3-plane approximation. In both 
cases the resulting eigenvalue problem was solved numerically. We shall solve this 
problem analytically by asymptotic methods in the f-plane approximation. Our 
results will confirm and supplement the previous ones, and our procedure will show 
how to solve similar problems. For example it should be applicable to the problem 
of instability of a shear flow in shallow water, which was treated numerically by 
Satomura (1981 a, b ) .  

The analysis shows that instability occurs only when two different modes resonate, 
i.e. have the same wavenumber and same phase velocity, as Hayashi & Young (1987) 
found. There can be two modes only if the governing ordinary differential equation 
has two turning points. This provides a very simple necessary condition for 
instability - a certain coefficient in the equation must vanish at two points in the 
interval. In  the case of the equation (2.2), which we solve, this condition requires 
c2 < $ for instability, where c is the scaled phase velocity. Our analysis leads to the 
sharper condition that c2 < f is necessary for instability. Of course only for certain 
particular values of c satisfying this condition, and for particular wavenumbers, does 
instability occur. These unstable values and the associated growth rates will be 
determined. 

2. Formulation 
Let us consider the flow of shallow water on the surface of a rotating sphere in the 

f-plane approximation. There is a steady zonal flow with zero potential vorticity, 
which can be written in dimensionless variables as 

U(Y) = Y-g, H(Y)  = $ Y ( l - Y ) ,  0 < Y < 1. (2.1) 
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Here U is the velocity in the x- or eastward direction, H i s  the depth of the fluid, and 
the velocity in the Y-direction is zero. We consider a perturbation of this flow in 
which the x-component of velocity is U( Y) + eik(z-ct) W( Y), with corresponding 
changes in the Y-component and in the depth. Then W satisfies the following linear 
equation (Griffiths et al. 1982, eq. (3.4); Hayashi & Young 1987, eq. (3.10)): 

- k 2 [ H - ( U - ~ ) 2 ] W = 0 ,  O < Y < l .  

When (2.1) is used in this equation it becomes 

+ k 2 [ [ a Y ( Y - 1 ) + ( Y - i - ~ ) 2 ] W = 0 ,  0 < Y <  1. (2.2) 

At the edges of the current, where H(Y) = 0, W ( Y )  must be finite so we have 

W(O), W(1) finite. (2.3) 

Our goal is to determine the eigenvalues c and the eigenfunctions W of (2.2) 
and (2.3). We note that the equation is unchanged under the transformation 
(c ,  Y )  + ( - c ,  1 - Y). Therefore it suffices to consider c 2 0. 

3. Asymptotic solution for c2 > 
To solve (2.2) we shall seek an asymptotic expansion of W(Y,  k) for k B 1. The 

nature of the expansion depends upon the sign of the coefficient of k2. We see that 
this coefficient is positive for all Y in the interval if c2 > t .  However if c2 < t the 
coefficient vanishes at  the two points 

1 2c 1 
2 3 - 6  

Y+ = - f- f- (3 - € 3 ~ ~ ) ; .  

It is negative between these points and positive outside them. 
These considerations show that for c2 > Q ,  W can be represented by a single 

asymptotic expansion in terms of trigonometric functions throughout the interior of 
the interval 0 < Y < 1.  However for c2 < Q there are two turning points at Y*, so W 
can be represented by trigonometric functions between 0 and Y- and between Y+ and 
1, and by exponential functions between Y- and Y+. It can be represented by Airy 
functions in the neighbourhood of each turning point. In addition, in both cases the 
coefficient of W” in (2.2) vanishes at Y = 0 and Y = 1 .  Therefore separate boundary- 
layer expansions, which involve Bessel functions, are needed near these points. 

The conclusion is that for c2 > 8, W can be represented by three asymptotic 
expansions - one in the interior and two near the boundaries. For c2 < #, W can be 
represented by seven asymptotic expansions : two Bessel function expansions near 
the boundaries, two trigonometric function expansions outside the turning points, 
two Airy function expansions near the turning points, and one exponential function 
expansion between the turning points. In each case the various expansions must be 
matched to the expansions in adjacent intervals. This matching ultimately leads to 
an eigenvalue equation or dispersion equation relating k and c. 

Let us begin with the expansion in the boundary layer near Y = 0. Since W is finite 
at Y = 0, we shall set W ( 0 )  = 1.  We introduce the stretched variable = k2Y and 
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write W(Y,  k )  - W(t) .  Upon introducing these variables into (2.2), and retaining 
terms of the highest order in k ,  we obtain 

5 q g + l q + 2 ( c + ; ) 2 W 0  = 0. (3.2) 

The solution of (3.2) which satisfies WO(0) = 1 is the Bessel function 

V(5) = Jo[lc+;1(85)fl. 

Then by setting 5 = k2Y in this expression for W(C) we obtain the result, 

W(Y,k)  - Jo[lc+$(k(8Y)i], 0 ,< Y < 1 .  (3.3) 

W ( Y , k )  - [ x k l c + # ( 2 Y ) i ] - ~ ~ o ~ [ k l ~ + # ( 8 Y ) ; - & ~ ] ,  k2Y B 1 .  (3.4) 

For k f i  large, (3.3) yields 

Next we consider the interval 0 < Y < 1 for c2 > g. Since the coefficient of k2 in (2.2) 
is positive in this interval, we use the WKB method to obtain an expansion of W. 
Thus we write 

(3.5) 

with B a constant. Then we substitute (3.5) into (2.2) and equate to zero the 
coefficients of k2 and of k to obtain 

W(Y, k )  - A (  Y )  cos [kS(Y) + 81, 

2( Y - c -4)s 

Y ( 1 - Y )  
( S ) 2  = A = O .  

The solutions of these equations are 

dy, A ( Y )  = A , [ Y ( l - Y ) ] - ;  . (3.7) 
Y(1 -Y) 

There is no loss of generality in choosing the positive square root for S because the 
cosine (3.5) is even, nor in setting S(0) = 0 because the constant B is arbitrary. 

To determine 8 and A ,  we first exeand S(Y)  and A ( Y )  for Y near zero to get 
S(Y) - Ic++l(8Y); and A ( Y )  - A0lc+~l-~(2Y)-f.  Then we use these values in (3.5) to 
obtain 

Now we match (3.8) with (3.4). We see that they coincide if 8 = -in and A ,  = (nk)-t. 
Upon using these values in (3.7), and then using (3.5), we obtain 

W( Y ,  k )  - [nkY( 1 - Y)]-;  

O < Y < I  if c 2 > g ;  O < Y < Y -  if c z < g .  J 
We have indicated that (3.9) holds also in the interval 0 < Y < Y- when c2 < g since 
the coefficient of k2 in (2.2) is positive throughout this interval. 

To complete the determination of W when c2 > t we must construct an expansion 
of Win the boundary layer near Y = 1 .  To do so we introduce the stretched variable 
T,I = k2(1 - Y )  and write W(Y, k )  - W(l)(7). Then by using these variables in (2.2) we 
find that W(l)  satisfies (3.2) with T,I replacing 5 and c -4  replacing c +t, so W(') is given 
by Jo[lc-;1(8~);]. Thus we obtain 

W ( Y , k )  -AJ0[lc-;lk[8(1-Y)]~],  0 < 1 - Y <  1 .  (3.10) 
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For k( 1 - Y)i  large (3.10) becomes 
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W(  Y ,  k) - A{nklc -$1[2( 1 - Y)]i}-i cos { k l ~ - # [ 8 (  1 - Y ) ] i - i ~ } ,  k2( 1 - Y) + 1. 
(3.11) 

Finally we must match (3.11) with (3.9) by expanding (3.9) for Y near 1. First we 
expand S(Y)  given by (3.7) to obtain S ( Y )  - S(l)-d8lc-#(l-  Y);  and then we can 
write (3.9) in the form 

W(Y,  k) - [nkl~-$ld2( 1 - Y ) ~ ] - ~ c o s  [k8( 1) -$I- kl~-a11/8(  1 - Y);],  1 - Y 4 1. 
(3.12) 

Comparison of (3.1 1) with (3.12) shows that they become identical if A = (-  l)n and 
kS(1) = (n+f)n where n 2 0 is an integer. This last relation determines the 
eigenvalue k in terms of c ,  and by using (3.7) we can write it as follows: 

(3.13) 

4. Asymptotic solution for c2 < $ 
For c2 c i t h e  boundary-layer expansions (3.3) and (3.10) still apply, and the WKB 

expansion (3.9) holds for 0 c Y c Y-. We shall now construct the additional 
expansions needed to cover the entire range of Y .  First we must expand (3.9) for Y 
near Y-. From (3.7) we obtain 

(3 - 8c2)i 
S(Y)  = S ( e ) - $ @ ( e - Y ) t +  ..., p- = 

Y-( 1 - Y-) . 

Then (3.9) can be written as 

W(Y,k)  - [nkY-(l-Y-)]-i[p-(Y-- Y)]-~cos[kS(Y-) -~n-~k@(Y--Y)~] ,  

0 < Y--Y 4 1. (4.2) 

Now for Y in the boundary layer near Y- we introduce the stretched variable 

(4.3) 

x = ki(Y-Y-) and write W(Y,  k) - W 2 ) ( x ) .  Then (2.2) yields 

wg -p- zW(2)  = 0. 

The solution of (4.3) can be written in terms of Airy functions as 

c+ Ai (&x) +c-  Bi (&x). 

Thus in the original variables we have 

W(Y,k)  - c+Ai@-k;(Y-Y-)]+c-Bi[fiki(Y-Y-)],  IY-YJ 4 1. (4.4) 

For ki(Y- Y-) 4 - 1, (4.4) becomes 

W( Y ,  k) - n-w/YIq Y- - Y)-+ 

x [c+ sin (Qk@( Y- - Y): + in) + c- cos ($k@( Y- - Y): + in)], d( Y - Y-) 4 - I .  (4.5) 

Matching of (4.5) with (4.2) yields the following equations for c+ and c - :  
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Next in the interval Y- < Y < Y+, where the coefficient of k2 in (2.2) is negative, we 
obtain the following exponential form of the WKB expansion : 

1 2  

Y- < Y < Y+. (4.7) 

W(  Y ,  k) - [nkY( 1 - Y)]+ [a+ ekR(Y) +a- e-kR(Y) 

Here R ( Y )  is defined by 

For Y near Y-, (4.7) becomes 

W( Y ,  k) - [nkY-( 1 - Y-)]-"( Y - Y-)-i 

x { a + e x p [ ~ ~ ~ ( ~ - ~ - ) t ] + a _ e x p [ - ~ k ~ ( ~ - ~ - ) ~ l > ,  o < Y-Y- -g 1. (4.9) 

Matching (4.9) with (4.7) gives the following expressions for a+ and a_: 

[nkY-(l-Ye)]i/3! dk@' [nkY-(l-Y-)];/3! 2nkd@' 

Upon using (4.6) for c+ and c- in (4.11) we get the connection formulae 

- -- c+ (4.10) 
C- a- =- a+ 

a- = 4 sin k#( Y-), a+ = cos kS( Y-). (4.11) 

This completes the determination of the expansion (4.7). 
To expand (4.7) for Y near Y+ we write 

(3  - 82); 
p+ = Y+(1- Y+) . R(Y) = R(Y+)-$&Y+-Y)f+ ..., (4.12) 

Then (4.7) becomes, for Y near Y+, 

W(Y,  k) - [nk~+(1-  Y+)I-;H(Y+- ~ ) - t { c o s k ~ ( ~ - ) e x p [ l e ~ ( ~ + )  -$~A(Y+- Y):] 
+gsinkS(K)exp[-kB(Y+)+gk&Y+-Y)t]}, 0 < Y+-Y 4 1. (4.13) 

By proceeding as in the case of the turning point at  Y-, we find that near the 
turning point Y+, W satisfies the Airy equation (4.3) with p- replaced by p+ and with 
II: = ki( Y+ - Y ) .  Thus the expansion of W near Y+ is given by 

W(Y,k )  -d+Ai@+k~(Y+-Y) ]+d-Bi@+k~(Y+-Y) ] ,  IY+-yI 1. (4.14) 

Expanding (4.14) for d(Y+-Y) %- 1 yields 

W( Y ,  E )  - n - k i L h (  Y+ - Y)-+ 

x {@+exp[-$k&Y+- Y)t]+d-exp[$k&(Y+-Y)f]} ,  d(Y+-Y) b 1. (4.15) 

Matching (4.15) with (4.13) gives the following equations for d+ and d-: 

cos kS( Y-) ekR(Y+) d- - sin kS( Y-) e-kR(Y+) 
-- (4.16) 
nik$$ 

d+ - 
2niki/3$ - [nEY+( 1 - Y+)]i& ' 2[nkY+( 1 - Y+)];& ' 

Now that the expansion (4.14) is determined, we expand it for ki(Y+ - Y )  < - 1 to 
obtain 

W( Y ,  k) - n-ik+p$( Y - Y+)-i 

x [d+ sin (gk,& Y - Y+)$ + in) + d- cos ( z ~ & Y  - Y+): +in)], Y - Y+) b 1 .  

(4.17) 
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using the usual WKB method, as in the interval 0 < Y < Y-, we obtain 
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Next we consider the interval Y+ < Y < 1 where the coefficient of k2 is positive. By 

x { b + c o s [ k T ( Y ) - ~ n ] + b ~ s i n [ k T ( Y ) - ~ a ~ ] } ,  Y+ < Y < 1. (4.18) 

Here T(Y)  is defined by 

(4.19) 

For Y near Y+, (4.18) becomes 

1 2k 
W(Y,k) N [7tkY+(l-Y+)]-;~(Y-Y+)-f  b+cos kT(Y+)-@--&(Y-Y+)i i [  3 

I1 2k 
+&sin kT(Y+)-@---&Y-Y+)i , 0 < Y-Y+ -4 1.  (4.20) [ 3 

For Y near 1,  (4.18) simplifies to 

W(Y, k) - [ 7 ~ k l ~ - # ( 1 - Y ) ] - f 2 - ~ ( l - Y ) - ~  { b + ~ o s [ k l c - # ~ 8 ( l - Y ) f - & ]  

-b-sin[kJc-~)1/8(1-Y)f-an]}, 0 < l -Y  -4 1. (4.21) 

Now we match (4.21) to the boundary-layer expansion near Y = 1 ,  which is given 
by (3.10) and in expanded form by (3.11). Matching shows that b- = 0 and b+ = A .  
Then we match (4.20) with (4.17) to get 

(4.22) 
a- - -- d+ A cos kT( Y+) -- A sin kT( Y+) 

[aRkY+( 1 - Y+)] iA  - nfk@ ' [nkY+( 1 - Y+)]iA xik$3$. 

Using (4.16) to eliminate d+ and d- from (4.22), and then eliminating A between the 
two equations (4.22) yields the dispersion equation 

cos kS( Y-) cos kT( Y+) = +e-2kR(Y+) sin kS( Y-) sin kT( Y+), c2 < Q .  (4.23) 

5. Analysis of the dispersion equation 

Now we shall analyse those equations, beginning with (3.13) which is 
We have obtained the dispersion equations (4.23) for c2 < Q and (3.13) for c2 > Q .  

This equation shows that the graph of k versus c consists of an infinite number of 
branches. They all can be obtained from the lowest branch with n = 0. To determine 
this branch we need merely evaluate the integral in (5.1) as a function of c .  For this 
purpose it is convenient to set y = i(1 +sin8), and then (5.1) becomes 
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For each n 2 0 this equation yields a unique real value of k for each IcI > (:)it and the 
value of k decreases as IcI increases. For IcI % 1 it yields 

(5 .3)  

Thus for IcI > (t);, there is no instability. 
When JcJ c (g); we must consider (4.23). By neglecting the exponentially small 

right-hand side we get cos kS( Y-) cos kT( Y+) = 0, which has the two families of 
solutions 

, n = 0 , 1 , 2  ,..., ( n + i ) n  k, = ~ 

S( y- ) 

( m + ; ) n  

T(Y+) 
km = , m = 0 , 1 , 2  ,.... 

(5 .4)  

(5 .5)  

Equations (5.4) and (5 .5)  yield two sets of curves of k versus c .  The curves for 
n = 0 and m = 0 determine all the others since k,(c) = (2n+ 1) k,(c) in each case. To 
obtain the two curves for n = 0 and m = 0 it is necessary to evaluate the integrals 
S(Y-) and T(Y+) as functions of c.  However, T[Y+(c), c ]  = S[Y-( - c ) ,  - c ]  in view of the 
invariance of the problem under the transformation (c, Y )  + ( - c ,  1 - Y) which was 
pointed out in 52. Thus it suffices to evaluate just one integral, S[Y-(c),c], as a 
function of c .  

From (3.1) we find that the turning point P ( c )  tends to zero as c decreases to -; 
and Y+(c) tends to one as c increases to 4. Therefore S[Y-(c), c ]  + 0 as c decreases to -4  
and T[Y+(c),c]+O as c increases to t .  By evaluating the integral S[Y-(c),c] for c near 
-; we obtain fi"Y-(c),c] = 4 ( ~ + ; ) ~ +  ... as c decreases to -;. Therefore 

T[Y+(c),c] = 4(9-c)2+ ... 
as c increases to 4. By using these results in (5.4) and (5.5) we get 

as C L - ~ ,  n = 0 , 1 , 2  ,..., ( n + + ) n  
4(c +;y k, w- 

( m + ; ) n  
4(; - C ) Z  

k m  - as c r + &  m = 0 , 1 , 2  ,.... (5.7) 

Thus all the curves of the first family tend to infinity as c decreases to -;while those 
of the second family tend to infinity as c increases to 4. When c is plotted versus k ,  
the curves have asymptotes at c = -; or c = +; as k+ 00. 

This result and (5.3) show that each curve has two asymptotes, and therefore has 
the general form of an hyperbola. On one set of curves, k increases from zero at  
c = + co to +GO at c = -;. The other set is the image of this set in the k-axis. 
Therefore each curve of one set crosses every curve of the other set at some value of 
c in the interval -; < c < 4. At these intersections (5.4) and (5.5) yield the same 
value of k. But a boundary-value problem for a second-order equation cannot have 
a double eigenvalue. Therefore we must take account of the small right-hand side of 
(4.23) in solving for k at and near the intersections. 

To do so we denote by c,, the value of c a t  which (5 .4)  and (5 .5)  yield the same 
value of k = k,, for given n and m :  
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Then we introduce E and S defined by 
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Upon using (5 .8)  and (5 .9)  in (4.23) and expanding the trigonometric functions for E 

and 6 small, we can write (4.23) in the form 

= fexp [ -2(n++) irR(y+'C"m)]+. . .  . (5.10) 
S(Y- 9 Cnm 1 

Here S ,  = aS/ac and T, = aT/ac. 
When the higher-order terms are omitted, (5.10) becomes a quadratic equation for 

S as a function of e. The solution can be written in the following form in which (5.9) 
is used to replace S by c - c,, : 

The arguments of S ,  T, S,  and T,  in the square root are the same as those in the 
preceding term. 

From the definition (3.7) of S we see that S > 0 and S, > 0 for 0 < Y < Y- and all 
real c .  From (4.19) we see that T > 0 for Y+ ,< Y < 1 and T,(Y+,c) = -S,(Y-, - c ) .  
Therefore the coefficient of the exponential in (5.11) is negative. Consequently the 
graph of 6 versus E ,  or of c - c, ,  versus k - k,,, is an hyperbola. There is an interval 
of E or of k -  k , ,  within which c - c , ,  is complex. That interval lies between the two 
points at which the square root in (5.11) vanishes. These points are given by 

Between these points the imaginary part of c, cI, is given by the square-root term in 
(5.1 1 ) .  Since there is one root with a positive value of cI, the basic flow is unstable in 
this interval of k .  Both k - k , ,  and cI decreases exponentially with n. Therefore the 
growth rate of the unstable mode, and the interval within which it occurs, are both 
very small for large or moderate values of n. 

From (3.7) and (4.19) we see that S(Y-,O) = T(Y+,O). Therefore (5 .6)  can be 
satisfied by setting m = n and c,, = 0. We also see that T,( Y+, 0) = -Sc( Y-, 0) so the 
first term in (5.11) vanishes and the second term simplifies to yield 

6 = S(Y-,O)k-(n++).n.  

The endpoints of the unstable interval are, from (5.12) or (5.13), 

(5.14) 
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FIQURE 1. Dispersion curves showing the real part of the dimensionless phase speed c as a function 
of the dimensionless wavenumber k. The curves are based upon (5.4) end (5.5), which are obtained 
by asymptotic solution of (2.2) and (2.3) for k 9 1. Surrounding each point of intersection is an 
interval of k within which c is complex. These instability intervals are given by (5.12), except for 
the first one. The value of n is shown on each curve. 

By using the preceding results we can now draw the curves of c versus k by 
proceeding as follows. : 

(a )  We evaluate numerically the integral in (5.2) for a set of values of c > @)a, and 
then calculate k from (5.2) for n = 0, or any other value. For c large we can use (5.3). 

( b )  We evaluate numerically S[Y-(c), c) given by (3.7) with Y-(c) given by (3.1), for 
a set of values of c in the interval (i)~ > c > -:. Then we calculate k from (5.4) for 
n = 0, or any other value. For c near -: we can use (5.6). 

(c) The second family of curves is the image of the first family in the k-axis. 
( d )  A t  and near the points of intersection of curves of the two families we replace 

the intersecting curves by the hyperbola (5.11). In  the gap (5.12) c is complex and it 
is given by (5.11). 

Figure 1 gives the curves k,(c) for c in the range -: < c < g, and k, in the range 
0 < k, < 10. They are obtained by the procedures ( b )  and (c) above. For n = 0 we 
show only the parts of the curves to the right of their point of intersection on the axis 
c = 0. The curves in figure 1 are in good agreement with those given by Hayashi & 
Young (1987) in their figure 2. Both of these figures apply when their parameter $ 
is small. Near the points of intersection of the curves in figure 1 there are small 
intervals of instability given by (5.12). Within these intervals c is given by the 
complex expression (5.11). These results simplify to (5.14) and (5.13) for the 
instability intervals on the axis c = 0. The first of these instability intervals contains 
the intersection point of the curves with n = 0. The left endpoint of this interval is 
not given correctly by (5.14) with the minus sign and n = 0. This is because the 
interval extends to k = 0, whereas our expansion is valid only for k large. It is 
remarkable that the curves are given so well for the values of k in the figure, which 
are not large, in agreement with the usual behaviour of asymptotic expansions. 
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